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Abstract—The camshaft is an essential part of a machine 

widely manufactured from wrought steel and nodular cast iron. 

One of the critical parts is a journal because this section should 

not have a physical defect on its surface. Several physical defects 

in the camshaft’s journal are identified in a typical gasoline 

machine camshaft. This work explores different state-of-the-art 

object detection methods and their applicability for camshaft’s 

journal and sprocket detection and classification tasks. 

Specifically, we implemented Faster R-CNN as part of 

Detectron2 using its base models and configurations. The 

results demonstrate that the X101-FPN base model for Faster 

R-CNN with the default configurations of Detectron2 is efficient 

and general enough to be applied to defect detection. This 

approach results in average correct detection score of 90.4% for 

test sets of the challenge. Though the visualizations show good 

prediction result, there are still some wrong defect detections. As 

a result, we compare the prediction results to the existing dataset 

and find some discrepancies. 

Keywords—camshaft, journal, sprocket, defect, detectron2, 

faster R-CNN. 

I. INTRODUCTION 

A central component of the typical automotive 
gasoline engine and other internal combustion engines is the 
camshaft. Its performance and operational quality have a 
significant effect on the performance of the automobile 
sector and the growth of the whole automotive industry. 
Cam mechanism is commonly used in all kinds of 
machinery, especially automatic machinery, automatic 
control unit and assembly lines, which can make the 
follower correctly realize any anticipated motion rule. As an 
integral part of mechanical goods such as cars and bicycles, 
camshaft components are in tremendous demand every 
year. Since the camshaft is the engine's main transmission 

part, its output specifications are higher [1]. A camshaft is a 
rotating rod that slides against machinery to convert 
rotational motion into linear motion. The camshaft moves 
away from the axis of rotation as it is pushed by the 
machinery, resulting in a change of motion. 

Fig. 1 shows a typical gasoline engine camshaft has 4 
bearing surfaces or what is known as a journal and 1 
sprocket. These journals and sprockets have a smoother 
surface compared to other areas which have a rough surface. 
if a defect occurs on this surface, the camshaft will become 
worn or there may be noise during operation. this is because 
the bearings that are attached to the surface of the journal do 
not rotate properly so that there are obstacles in the rotation 
of the bearings and have an effect on the entire combustion 
system or motions. 

 

Fig. 1. Camshaft’s journal and sprocket location 

 Camshaft are widely manufactured from wrought steel 
and nodular cast iron. Forged steel camshaft have a smaller 
number of cavities and microstructural defects compared to 
castings. however, defects can still occur in some parts of 
the camshaft which make the working performance 
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decrease and camshaft failure. there are various defects in 
the camshaft, especially in the journal and sprocket. For 
camshaft made in Japanese manufacturers as shown in Fig. 
2 , the name defect is also a Japanese term: (1) suana or 
burrow on the surface of the journal, (2) Kurosawa or a very 
small hole that collects a lot in an area on the surface of the 
journal, (3) dent, (4) lied down scratch along the journal 
surface. in terms of detection, there are also detection items 
but they are not classified as defects for further processing. 
This detection is to see the special holes for the sprocket at 
the very side of the camshaft. This hole is a place for 
pushing rods. This detection is done to see if this hole is 
there. However, if this hole is not detected then the pushing 
rod cannot be installed there and the camshaft will be 
rejected or put into the remelting process. 

 

Fig. 2. Example of journal and sprocket defects: (a) suana, (b) dent, (c) 

scratch, (d) kurokawa 

 However, in most countries, detecting and classifying 
camshaft defects is currently done by hand or with 
expensive sensors. As a result, automatic detection and 
classification of different types of camshaft defects has 
recently become popular. Deep learning is also gaining 
traction and achieving state-of-the-art results in a variety of 
computer vision tasks [2-3], thanks to recent advancements. 
As a result, many studies in the literature employ deep 
learning techniques to detect and classify flaws. 

 Detecting and classifying defects in camshaft journals 
and sprockets with deep learning typically entails three 
steps: (1) collecting image data, (2) creating labels for the 
data, (3) building deep learning models from the labeled 
data, and (4) testing the model's performance. Furthermore, 
providing bounding boxes and labels for camshaft journal 
and sprocket defects is prone to error and necessitates a 
significant amount of human labor to produce accurate 
results. As a result, this research looks into cutting-edge 
object detection methods in order to find general camshaft 
journal and sprocket defect detection and classification 
models that can be used across multiple territories. 

II. VISUAL INSPECTION SETUP 

Visual inspection setup is presented in Fig. 3. By using 
a typical industrial camera placed in a blue dome lighting 
driven by an industrial end effector's arm robot, the camera 

can take pictures for each journal and the sprockets at each 
turn. based on the camshaft circumference and the camera's 
field of view, 8 turns are obtained to detect all journaling 
surfaces in one full rotation. The camshaft tested had 4 
journals and 1 sprocket, so that a total of 40 images were 
obtained (8 images for each journal and sprocket).  

 

Fig. 3. Visual inspection setup 

 

Fig. 4. Example of journal and sprocket defect captured by camera: (a) 

dent, (b) kurokawa, (c) scratch, (d) suana, and (e) Hole (hole is not defect, 

if the sprocket is lack of hole, its defect) 

The visual inspection system starts with a pick and 

place process by the robot. Camshafts that have not been 

inspected will be taken by the robot and then placed in a jig 

that has been connected to the motor to rotate the camshaft 

while the camera will take pictures of each journal and 

sprocket for each rotation. All images captured by the 

camera will be entered for processing and thrown into the 

machine learning algorithm. all the defect detection results 

will be displayed on the screen. Meanwhile, the images 

(a)                                 (b) 

   
(c)                                 (d)    

  
(e) 

 
 

Camshaft on jig 
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obtained are in the form of black and white images from 

the 5-megapixel camera. the defects will be seen by this 

image acquisition method as shown in Fig. 4. 

III. DATASET AND LABELLING METHOD 

To create machine learning, we must first create a 
model. The model is created through a training process, the 
goal of which is to create an accurate model that answers 
and predicts a variety of input data and is associated with 
specific categories. A dataset is required to create a model 
[4]. The dataset used in this work is from taking multiple 
sample images with the same camera setup and lighting 
every time. A training set, a validation set, and a testing set 
comprise this dataset. The training and testing sets, in 
particular, contain defect images from the journal and 
sprocket of the camshaft, as well as bounding boxes and 
defect types (for the training set). 

It is the process of categorizing raw data (images, texts, 
videos, etc.) and adding one or more meaningful or 
informative labels to provide context so that a machine 
learning model can learn from it in the context of the data 
labelling or annotation process in machine learning. 
Furthermore, for this dataset, there are five types of labeled 
camshaft’s journal and sprocket defect types namely 
scratch, kurokawa, dent, suana and hole. The data for the 
train set and validation set, respectively, are divided by the 
portions, while our test set uses defect images outside of the 
train image data and the validation set. To label the selected 
image, we use an open-source software, LabelImg. 
LabelImg is a graphical image annotation tool and label 
object bounding boxes in images [5]. labelImg uses the box 
type to annotate several types of objects that you want to 
name which will be passed to machine learning for training, 
validation and testing. As shown in Fig. 5, the label 
annotation results are marked according to the defect type 
then the annotation file is stored in the same directory. For 
the type of annotation used, we adapted the MS COCO json 
format from Microsoft [6]. 

 

Fig. 5. Image annotation based on defect type in Labellmg 

IV. METHODOLOGY 

Our general methodology is to begin with data 
exploration to gain a better understanding of the dataset. 
After that, we divide the training dataset into two sets: 
training and evaluation. The validation allows us to 
quantitatively evaluate the hyper-parameters for our 

architectures. In terms of deep learning model architectures, 
we start with the Faster R-CNN base model, which is widely 
used. We're using the detectron2 model zoo as the baseline 
for a Faster R-CNN algorithm called X101-FPN [7, 8]. 

A. Data exploration and train, valid, and test splits 

This dataset consists of one training set (train), one 
validation set (valid) and one test set (test). The training set 
contains 801 images (0, 30, 112, 220, 357, 82 for kurokawa, 
dent, scratch, suana, hole and random defects respectively). 
The validation set contain 199 images (0, 7, 17, 71, 78, 26 
for kurokawa, dent, scratch, suana, hole and random defects 
respectively. The one test sets contain 49 images, 
correspondingly. Kurokawa defects do not have the number 
in 1 image, but this defects occur in random defects (a 
combination of several defects in 1 image). The dataset 
contains over 1000 ground-truth labels (bounding boxes and 
defect types). Fig. 6 depicts the defect type distributions 
across the entire training and validation set. In general, the 
scratch defect type has the most images and defects, while 
the dent defect type has the least. 

 

Fig. 6. Defect type distribution ovel all dataset 

We split the training dataset into training, validation and 
test. Specifically, we keep 95% of the images for training 
(training and validation), and 5% for evaluation (test). 
Because this set has 49 images, a 5% split for evaluation is 
reasonable. The performance of the learned models can be 
evaluated using more than a dozen images. This evaluation 
set is used to evaluate our model's performance and the 
hyperparameter selection process during training in a 
quantitative manner (such as prediction score threshold and 
number of train iterations). After splitting, the damage types' 
distributions are shown in Fig. 7. Furthermore, because the 
train and evaluation distributions are similar, using the 
origins of damage types as a stratified field seems sufficient. 
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Fig. 7. Defect type distribution over all training and validation set 

We ran our tests on a Google Colab notebook, which 

has free GPU access. It comes with an NVIDIA Tesla P100 

GPU and 16 GB of RAM, as well as Python 3.x packages, 

PyTorch, and the Keras API with a TensorFlow backend 

pre-installed. They are a collection of tools or modules that 

are useful for several jobs specifically related to machine 

learning. 

When training a Faster R-CNN model, there are a lot of 

hyper-parameters to tweak [9]. As a result, exploring all of 

the configurations is nearly impossible in terms of time and 

computational resources. As a result, we'll start with the 

most basic and obvious configurations. Specifically, we set 

'cfg.SOLVER.WARMUP_ITERS' (number of iteration) to 

1000, 'cfg.SOLVER.IMS PER BATCH' (images per batch) 

to 4,  'cfg.SOLVER.MAX_ITER' to 2000, 

'cfg.SOLVER.BASE LR '(base learning rate) as 0.001, 

cfg.SOLVER.GAMMA to 0.05 and 'cfg.MODEL.ROI 

HEADS.NUM CLASSES '(number of classes) is 6 (as 

correspond to four different types of defects and add 1 for 

the initial setup). All other configurations are kept as 

default from Detectron2.  

Based on the results of training and process validation, 

it is obtained using the help of data from the tensorboard 

[10], that the average precision of the training process and 

the loss of the training process is shown in Fig. 8. For 

ranked retrieval results, average precision (AP) is a 

measure that combines recall and precision. The average 

precision for a given information need is the average of the 

precision scores after each relevant document has been 

retrieved. AP can be defined as: 

𝐴𝑃 =  
∑ 𝑃@𝑟𝑟

𝑅
   (1) 

 

Where 𝑟 , 𝑃@𝑟 , and 𝑅  is ranked retrieval results, 

precision score after each relevant result, and recall [11]: 

 

 

 

(a) 

 
     Epochs 

 

(b) 

 
Epochs 

Fig. 8. Training result: (a) average precision hit 48.475 after calculated 

based on (1) and (b) average loss hit 0.3978 

B. Evaluate Model 

The predicted bounding boxes are also visualized with 
tensorboard, along with corresponding labels and results 
scores. Predictions and ground-truth matches are, on the 
whole, pretty good. The camshaft's journal and sprocket 
defect detection and localization correctly identifies the 
defect type and location in most test sets. Fig. 9 shows some 
sample detection and correct defect location. The results 
obtained show that the model built can almost detect all 
types of defects with a confidence level above 66% (Since 
we set the minimum threshold setting to be able to enter the 
detection defect of 50% or in detectron2 config is 
`cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 
0.5` and some even have a confidence level of up to 99%. 
This shows that the results of the dataset and annotation 
process that have been carried out, as well as by using Faster 
R-CNN with baseline X101-FPN get quite optimal results 
even though there are some discrepancies. We also 
discovered a few inconsistencies, as well as some incorrect 
detection and too many ground-truth bounding boxes. Fig. 
10 shows a few of these discrepancies. The built model still 
cannot detect a big suana defect because in the test set, the 
suana that occurred was indeed very large and shaped like a 
hole, so the detection results were not correct (recognized as 
a hole). This too much ground-truth bounding boxes occurs 
when a defect is detected by many bounding boxes among 
them. however, in terms of detection and classification 
based on test set, the predictions are always correct.  
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Fig. 9. Example of correct prediction detection and classification of 

defect in various given journal and sprocket test sets: (a) suana, (b) dent, 
(c) kurokawa with hole (hole is not defect), (d) scratch, and (e) 

combination image with multi detections (hole is not defect, if the 

sprocket is lack of hole, its defect) 

  (a)                                       (b)      

  

Fig. 10. (a) Example of cases where machine learning model result cannot 

detect suana but it is detected as a hole because they are similar in shape 

but different in size. (b) machine learning model result is overfit, one 

scratch is identified by 3 bounding boxes 

V. CONCLUSION 

This paper investigates various state-of-the-art object 
detection methods and their applicability to the detection 
and classification of camshaft journal and sprockets. We 
used the X101-FPN base model to test Detectron2's Faster 
R-CNN implementation with the X101-FPN base model. In 
other words, the results show that using Faster R-CNN with 

the X101-FPN base model and the default configurations of 
Detectron2 produces good prediction results for these tasks 
(average correct detection score of approximately 90.4 
percent for test sets) and is also general enough to be used 
in different camshaft journal and sprocket defect detection 
(note: need to retrain for following discrepancies). 
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