
 

24 
 

Conference on Management and Engineering in Industry (CMEI) 

Predictive Maintenance of Heavy Equipment in 

Indonesia Leading Heavy Equipment Company 
 

Ferdinand Widjaja 

Master of Mechanical Engineering  

Swiss Germany University  

Tangerang City, Indonesia 

itsferdinandw@gmail.com  

 

Gembong Baskoro  

Master of Mechanical Engineering 

Swiss German University 

Tangerang City, Indonesia 

gembong.baskoro@sgu.ac.id 

Dena Hendriana  

Master of Mechanical Engineering  

Swiss Germany University  

Tangerang City, Indonesia 

dena.hendriana@sgu.ac.id  

 

 

 

 

 

 

 

 

Eka Budiarto  

Master of Information Technology 

Swiss German University 

Tangerang City, Indonesia 

eka.budiarto@sgu.ac.id 

 

Henry Nasution 

Master of Mechanical Engineering 

Swiss German University 

Tangerang City, Indonesia 

henry.nasution@sgu.ac.id

Abstract—The use of heavy equipment in a production 

process, especially coal mining, is very dominant and is the main 

work tool. Therefore, the productivity of mining is very 

dependent on the performance of the heavy equipment used. In 

maintaining the performance of today's machines, it is not 

enough only with preventive and corrective maintenance, but 

also with predictive maintenance (PdM). Through PdM, it is 

expected that heavy equipment performance can be maintained 

properly because it can reduce the unscheduled breakdowns. 

PdM in this research aims to help prioritize heavy equipment 

routine service management, so that more urgent heavy 

equipment conditions will get priority for maintenance first so 

as to prevent unscheduled breakdowns compared to current 

service management which still uses time based as the only 

maintenance priority tool. PdM will focus on finding warnings 

and indicators that can be used to determine the remaining 

useful life (RUL) of engine components by using data from 

telemetry, oil analysis, historical component lifetime and other 

maintenance data. In this research, we get the predictive 

maintenance results in the form of 2 types of warnings and also 

the RUL prediction with a mean absolute error of 91 hours 

compared to the actual RUL. 

Keywords—coal mining, heavy equipment, predictive 

maintenance, early warning, monitoring system.  

I. INTRODUCTION 

For mining industry in Indonesia, especially coal 
mining, productivity from heavy equipment and operators 
is the most important thing. One of the factors that is very 
instrumental in determining productivity in the coal mining 
industry itself, among others, is the readiness of heavy 
equipment to always operate. The obstacle that often occurs 
is the heavy equipment is not always ready to operate and 
often damage is sudden or unexpected. This unscheduled 
breakdown itself is very closely related to the operation of 
the unit and the maintenance program of the unit itself. In 
this research, we will focus on how to reduce unscheduled 
breakdown caused by the process/maintenance program of 
the unit itself. 

Before we further talk about unscheduled breakdowns, 
we should look at the big picture of maintenance 
management of heavy equipment so that ultimately it can 
cause unscheduled breakdowns. By improving maintenance 
management of heavy equipment, it is expected to reduce 
the possibility of unscheduled breakdown itself. 
Maintenance management to reduce the occurrence of 
unscheduled breakdowns can run effectively if the 
condition-based maintenance (CBM) process and also 
predictive maintenance (PdM) type have been able to be 
carried out by the maintenance team. If both types of 
maintenance (CBM & PdM) cannot be done, it is very 
difficult to be able to change/prevent unscheduled 
breakdowns from heavy equipment as shown in Fig. 1. 

 

Fig. 1. Heavy equipment maintenance management type [1] 

II. RESEARCH METHODS 

In this research, we defined Predictive Maintenance 
(PdM) according to Kange and Lundell [2] as "Condition 
based maintenance carried out following a forecast derived 
from repeated analysis or known characteristics and 
evaluation of the significant parameters of the degradation 
of the item". We will use historical data to get the trends of 
a system's behaviour in relation to predicting the time when 
the component will breakdown or fail. After we can get the 
failure trend, then the time of failure also can be predicted 
and also will be assign for a new preventive maintenance 
activity to be scheduled. Based on our definition above, a 
visual inspection can also be one of  PdM technique that 
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predictions are bases upon. As already mention earlier, we 
see this PdM as an advancement or upgrade from previous 
maintenance type that we already implemented, which is 
CBM. Because of that, we can’t clasified PdM as a 
replacement of others maintenace types. The basic 
maintenance type will not completely eliminated because of 
implementation of PdM, but that will be complementary one 
and the other. If we can have an effective PdM and CBM, 
we can reduce the composition of PvM and corrective 
maintenance. PdM technique is a combination of a 
technology, mathematic and human skill. The making 
process  of PdM analytic is by using all the data currently 
owned and also the performance units of the past as well as 
all the trouble records that have occurred before, then all the 
data is linked to the right maintenance activities and the 
most cost optimal for execution time. The study starts by 
determining the problems, and then searching for literature 
that is related to the research, data gathering, and finally 
implementing descriptive analysis method to all the data 
that will be used for analysis. Before inputing the data for 
descriptive analysis, the data and parameters are first 
prepared using the DMAIC framework [3]. 

A. Failure Analysis with manual pattern 

Failure analysis is carried out using descriptive analysis 
method by monitoring the main parameters of the VHMS as 
a summary of the subject matter expert since the engine 
component is installed in the PC2000-8 excavator until the 
engine is removed from the excavator due to failure. The 
data used in the failure analysis are :  
1. Telemetry / sensor data derrived from VHMS [4]  
2. Maintenance data in the form of historical component 

replacement. 
3. Parameter limit from Komatsu Shop Manual Hydraulic 

Excavator PC2000-8 

Failure analysis is carried out first by taking a sample of 
the PC2000-8 engine that is in the FMC contract, so that the 
completeness of the data and analysis can be carried out by 
the UT Subject Matter Expert team. Details of the dataset 
from the EX1701 engine as Table 1 below : 

TABEL I  
DETAIL DATASET OF ENGINE EX1701 

 

Details of the value limits of the main VHMS 
parameters that will be analyzed in order to provide a 
warning can be seen in the Table 2 below :  

 
 
 
 
 

TABEL II  
DETAIL STANDARD LIMIT OF ENGINE EX1701 

 

After all the datasets needed for the EX1701 engine unit 
are available, then a descriptive analysis is carried out by 
making a scatter plot graph for each of the main VHMS 
parameters mentioned above. The scatter plot made consists 
of the x-axis and the y-axis, where the x-axis is for the hour 
meter (HM) of the unit and the y-axis is for the actual 
number of each of these VHMS parameters. 

Maximum boost pressure is one of the main parameters 
that must be measured, where measurements are made 
based on the maximum boost pressure found on the inside 
of the turbocharger for a span of every 20 hours, according 
to the data transmission schedule from VHMS. 
Measurements are made using the mmHg unit and in ideal 
conditions it must be above the minimum limit based on 
data from the SMEs which is at 750 mmHg. 

 

Fig. 2. Boost press Max vs SMR of engine EX1701 

Fig 2 is showing failure analysis that occurred in the 
maximum boost pressure parameter began to occur after the 
engine operated for 9.217 HM, that is by recording a value 
of more than 1200 mmHg compared to the average value 
since starting operation of 952 mmHg (an increase of about 
26%. Then, from SMR 20.817 to engine failure at SMR 
27.335, there were 22 abnormal boost pressures with a value 
between 1.200 – 2.610 mmHg (an increase of about 26-
174%). 

TABEL III  
SUMMARY OF ABNORMAL BOOST PRESSURE DATA FROM 

ENGINE EX1701 
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From the data Table 3, we can analyze that the increase 
in the value of boost pressure is directly proportional to the 
lifetime of the engine component. The higher the abnormal 
value of boost pressure, the closer to the end of the engine 
component's life. 

From Fig. 3 below, we can see that the maximum 
pressure boost parameter can be used as an indication of the 
estimated age of engine components, especially for engines 
whose life will end in the next 6,000 HM. The maximum 
boost pressure parameter value with a range of 1.200 – 
2.000 mmHg can provide estimation information that the 
engine life will end in another 2.500 – 6.500 HM. As for the 
maximum boost pressure value with a range above 2.000 
mmHg, it can provide estimation information that the 
engine life will end in less than 2.500 HM again. 

 
Fig. 3. Abnormal boost pressure vs RUL of engine EX1701 

In addition, we can also look at the trendline and 
equation to determine the estimated engine life/remaining 
useful life (RUL) based on the maximum boost pressure 
parameter.  

 
 

After the boost pressure maximum, we also see the 
maximum engine coolant temperature, where the 
measurement is made based on the maximum temperature 
of the engine coolant fluid in a span of every 20 hours, 
according to the data transmission schedule from VHMS. 
Measurements are made using units of degrees Celsius and 
in ideal conditions it must be below the maximum limit 
based on data from the SMEs which is at 95 degrees Celsius. 

 

Fig. 4. Cool temp Max. vs SMR of engine EX1701 

From the Fig. 4, the maximum engine coolant temperature 
parameter above, it can be concluded that the parameter has 
experienced an abnormality, even not long after the engine 
is installed in the unit. Engine coolant temperature 
throughout its life operates in a value range of 90-105 
degrees Celsius. In addition, there is also a missing value 
because the data from the sensor does not transmit in the 
SMR 21.200 – 21.900 range. Failure analysis that occurred 

at the maximum coolant temperature parameter began to 
show abnormalities since the engine component was first 
installed on SMR 11.600 and continued until SMR 19.473 
then continued again from SMR 22.621 to SMR 25.771 so 
that from the total lifetime of the engine component of 
15.735 hours meters, the component has an abnormality in 
the coolant parameter, a maximum temperature of 70% of 
the total operating lifetime of the engine component (11.024 
hours meter). Based on the failure analysis of the coolant 
temperature maximum parameter. As an individual this 
parameter can be used to see whether the engine component 
is operating in its ideal condition or not, but it cannot 
determine how much the maximum coolant temperature 
parameter has an effect on engine life. 

Another parameter that we see is front side fan pump 
pressure, where measurements are made based on the 
maximum temperature of the engine oil in a span of every 
20 hours, according to the data transmission schedule from 
VHMS. Measurements are made using units of kg/cm2 and 
in ideal conditions it must be between the minimum and 
maximum limit ranges, based on data from SMEs it is 125 
– 225 kg/cm2. 

 

Fig. 5. Rear fan pump pressure vs SMR of engine EX1701 

From Fig. 5 the rear side fan pump pressure parameter 
above, it can be concluded that this parameter has an 
abnormality tendency in the SMR 13,000 - 19,000 range 
because the fan pump pressure is above the maximum limit, 
in addition, there is also a missing value because the data 
from the sensor does not transmit in the SMR 21.200 – 
21.900 range. Failure analysis that occurred on the rear fan 
pump pressure parameter began to show abnormalities since 
the engine component was installed on the SMR 11.600. 
From there, it can be seen that at the beginning the engine 
component operates up to SMR 12.849, the rear fan pump 
pressure tends to work under pressure below the minimum 
pressure limit, ideally at 125 kg/cm2 and then since SMR 
12.889 shows a different phenomenon, this time the rear fan 
pump pressure works over pressure above the maximum 
pressure limit, ideally at 225 kg/cm2 up to SMR 19.273, 
after which the rear fan pump pressure operates within its 
ideal limits up to SMR 22.481. Only then at SMR 22.481 – 
25.771 again experienced over pressure and returned to 
operating within its ideal limit until the component failed at 
SMR 27.335, so it can be concluded that the component has 
an abnormality in the rear fan pump pressure parameter of 
69% of the total operating lifetime of the engine component 
(10.924 hours meters). Based on the failure analysis of the 
rear fan pump pressure parameters discussed earlier, the rear 
fan pump pressure parameter has the same analysis results 
as the maximum coolant temperature parameter, i.e. as an 
individual this parameter can be used to see whether the 
engine component is operating in its ideal condition or not, 

𝑅𝑈𝐿  ℎ𝑜𝑢𝑟𝑠 =  −3,9878 𝑥 𝑏𝑜𝑜𝑠𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 +  9740,9 ; 

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑛𝑙𝑦 𝑤ℎ𝑒𝑛 𝑏𝑜𝑜𝑠𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 1200 𝑚𝑚𝐻𝑔 
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but cannot determine how much the rear fan pressure 
parameter has an influence on engine life. 

B. Failure Analysis with data analytic software 

Data analysis for RUL calculations using data analytic 
software starting from the preparation of the dataset. The 
dataset to be used is the same dataset as the dataset that has 
been used in the previous manual analysis, so there is not 
much data processing to start with. Data processing will be 
carried out based on iteration to get better accuracy results 
when the dataset is processed by data analytic software. 

The details process of data forming to create the dataset 
along with the amount of each data and also the joint key 
can be seen in Fig. 6 below: 

 

Fig. 6. RUL dataset structure 

After getting a dataset that is ready to be used as input in 
machine learning software, then we make 4 models to 
experiment with the Orange Data Mining software, namely: 
Model A, Model B, Model C and Model D (see Fig. 7). 

 

Fig. 7 RUL dataset structure 

The results of calculating the RUL for the four models 
using the Orange software can be seen in Table 4 below: 

TABEL IV 
RUL CALCULATION RESULT FROM ORANGE 

 

Looking at the Table 4 above, there still a way to 
increase the accuracy of the predictions of model A and 
model C, several improvements need to be made, including: 
first is more experiment with the use of other algorithms, 
outside the Random Forest and Neural Network. Second, 
experiment with making changes and several alternative 
combinations of preprocess features, such as normalize to 
interval, select relevant feature, or by using other features 

such as rank, select column, etc. Third, experiment by doing 
on the dataset, by looking at the results of the accuracy of 
the previous predictions, where the inaccurate details of the 
dataset are separated and a separate model is made 
separately from the dataset whose results are good enough, 
so as not to reduce the total value of the predicted results.  

III. RESULTS AND DISCUSSIONS 

Continuing the failure analysis on the Komatsu PC2000-
8 engine code unit EX1701 in the previous chapter II, then 
based on the results of the failure analysis and failure 
indicator on the EX1701 engine, a data analysis will be 
performed on all available failure data. From the 3 failure 
indicator parameters obtained above, we will analyze all 17 
cases of engine premature lifetime (unschedule 
replacement), did the engine have the same failure indicator 
and warning that can be used as a predictive tool for 
estimating when the engine's life will end (RUL). 

A. Data Analysis Implementation 

Data analysis will be carried out for all 17 cases of 
unscheduled engine component replacements (USC), 
including the replacement of the engine component on the 
EX1701 unit discussed in the chapter 2 above. Data analysis 
has been carried out for 17 engine units that have 
unschedule component replacement to see the abnormality 
and critical warning from the total 10 parameter. The results 
of the critical warning can be seen in Table 5 and Table 6 
below: 

TABEL V  
CRITICAL WARNING FOR ENGINE PC2000-8 (PARAMETER 1-6) 

 

From Table 5 above, there are 6 parameters that are 
analyzed for critical warnings generated from all 17 units of 
the PC2000-8 engine component and a total of 595 warnings 
are obtained over the specified critical limit, that are only 
generated by 4 parameters. The 2 parameters that do not 
provide a warning for the 17 engine component units are 
engine oil pressure maximum parameter and engine speed 
maximum parameter.  

From Table 6 above, there are the next 4 parameters that 
are analyzed for critical warnings generated from all 17 
units of the PC2000-8 engine component and a total of 6281 
warnings are obtained over the specified critical limit. It can 
also be seen from the 4 parameters above, it turns out that 
more than 80% of the warning is generated from 3 
parameters, namely maximum coolant temperature, front 
fan pump pressure and rear fan pump pressure. Meanwhile, 
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the parameter that gives the most warnings is the rear fan 
pump pressure parameter. So, for this critical warning, we 
can conclude some of the results of the analysis as follows: 

1. The amount of warning data obtained varies greatly. 
To be able to perform the analysis properly and to get 
a conclusion, a large amount of data is required. One 
unit that has quite a lot of data is the replacement of 
the second engine unit EX1701, so in addition to 
getting a warning, it can also provide an estimate of 
the RUL prediction from the maximum pressure boost 
parameter..  

2. From the 10 parameters that were analyzed on a total 
of 17 PC2000-8 engine units, there were 2 parameters 
that did not provide critical warning information, 
namely engine oil pressure maximum and engine 
speed maximum. 

3. All units can provide critical warning information 
during operation and before failure. 

TABEL VI  
CRITICAL WARNING FOR ENGINE PC2000-8 (PARAMETER 7-10) 

 

4. The amount of warning data obtained varies greatly. 
To be able to perform the analysis properly and to get 
a conclusion, a large amount of data is required. One 
unit that has quite a lot of data is the replacement of 
the second engine unit EX1701, so in addition to 
getting a warning, it can also provide an estimate of 
the RUL prediction from the maximum pressure boost 
parameter..  

5. From the 10 parameters that were analyzed on a total 
of 17 PC2000-8 engine units, there were 2 parameters 
that did not provide critical warning information, 
namely engine oil pressure maximum and engine 
speed maximum. 

6. All units can provide critical warning information 
during operation and before failure. 

We also found the same way for the caution warning and 
The detailed summary of each warning and parameter can 
be seen in the Table 7. 

So that from the total analysis carried out on the 17 unit 
of PC2000-8 engine components, there were 20,026 
warnings during the engine operation which would help 
prioritize the service work of the more critical engines. 

TABEL VII 
CRITICAL WARNING FOR ENGINE PC2000-8 (PARAMETER 7-10) 

 

B. Data Analysis Implementation with data analytic 

software 

The results of further analysis of the results of the RUL 
prediction using the full dataset show that there is an 
increase in the error of the RUL prediction which is closer 
to the time the component fails, so that the total prediction 
result is not optimal. Therefore, to improve the results of the 
RUL prediction, experiments were carried out by separating 
the dataset based on RUL below 1000 HM and RUL above 
1000 HM. The results of the best RUL predictions that can 
be obtained currently consist of 3 pieces of dataset as 
follows: 

1. Dual modeling by dividing the dataset, between datasets 
that have an RUL below 1000 hourmeter (HM) and 
datasets that have an RUL of more than 1000 HM. This 
dual modeling RUL Prediction succeeded in making 
predictions for RUL <1000HM with MAE 62.703 and 
prediction for RUL> 1000HM with MAE 85.045 using 
the AdaBoost algorithm and preprocess using the C 
model. 

2. Single modeling using the full period RUL dataset 
Prediction is successful in making predictions with 
MAE 91,469 using the AdaBoost algorithm and 
preprocessing using the C model. 

The detail experiment result with different dataset can be 
seen in Table 8. 

TABLE VIII  
RUL CALCULATION RESULT WITH ADABOOST ALGORITHM 

 

C. Failure Analysis using Automation 

As for the failure analysis process, it requires assistance 
from an automation process using an application/program 
that can speed up the process compared to manual analysis. 
This is mainly due the analysis process of creating alerts or 
notifications as an early warning involves quite a lot of 
parameters; the number of units and the daily transmit data 
interval. This makes manual analysis carried out 
individually will be less effective, because it requires a long 
time and also a lot of new data results transmits piled up and 
queued for analysis.  

Based on the results of discussions with the subject 
matter expert team, one of them is the site technical engineer 

< 1000 

HM

> 1000 

HM
Full Data

MAE 62,585 82,202 91,204 Diff 3-7 days only

R2 0,916 0,996 0,995

SUBJECT

MODEL C - AdaBoost

REMARKS
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who carries out manual failure analysis on a daily basis. It 
can be concluded that the hopes and objectives of the 
automation process and system development that must be 
carried out are as follows : 

1. Access to performance monitoring dashboard and 
parameters for all monitored machines, so that it can 
be seen in one place, one system, and one dashboard. 

2. Automatic alerts and notifications will make it easier 
for site technical engineers to receive information on 
abnormalities quicker, so that they can immediately 
follow up on these abnormalities. 

Details of the process flow can be seen in Fig. 8 below. 

 

Fig. 8. Concept of failure analysis & data flow with automation in CBM  

The aim of this automation system is that site technical 
engineers can facilitate the data collection process and can 
focus on the validation process, analysis and follow-up 
actions.  

D. Monitoring System for unit health condition 

In accordance with the requirements and objectives of 

the monitoring system as described in sub-chapter C above. 

The monitoring system requires a system consisting of a 

web application, email notification, application interface, 

and a business intelligence dashboard in order to provide 

early warnings on the data flow that is processed by the 

application. The monitoring system solution can be broadly 

divided as follows (Fig. 9):  

1. Condition Based Monitoring (CBM) Portal – National 

condition dashboard & unit condition detail, that can 

display jobsite/branch conditions based on the number 

and movement of abnormalities on population units in 

the area and also displays detailed performance 

conditions for the machine consisting of abnormality 

parameters, and unit performance indicator (PA & 

MTBF). 

2. Preventive and Correction Action Report (PCAR) 

Portal – Web application for detail analysis and follow 

up action, especially related to parameters 

experiencing these abnormalities. The functionalities 

of the PCAR portal are first, can display a dashboard 

for all PCARs that have been formed automatically, 

along with all progress status for each PCAR based on 

their respective areas and units. Second, automatically 

creates notification (warning) and PCAR for each 

parameter that exceeds the predetermined limits based 

on factory standards. Third, doing follow up actions; 

starting from analysis; recommendation of detailed 

actions that must be taken, so that monitoring can be 

done until the PCAR is closed, all in one portal. 

3. Automatic Email Notification, The notification email 

is sent by the PCAR portal system directly to the email 

address of the registered team to give an early and 

proactive warning. 

 

Fig. 9. Predictive maintenance analysis tools through CBM portal  

IV. CONCLUSIONS 

A. Conclusions  

Based on the analysis, several conclusions can be 
obtained, including : 

1. Predicting the estimated remaining useful life (RUL) 

of engine can be obtain through manual analysis from 

maximum boost pressure parameter and through data 

analytic software. RUL from boost pressure 

parameter will use the following equation : 

RUL (hours) = (-3,9878 x boost pressure) + 9740,9  

2. The critical and caution warning obtained from the 

parameters can be used as early warnings that there 

are problems with the engine component based on the 

standard limits given by the factory. 

3. Warning and prediction of RUL estimation can be 

used to provide prioritization tool for heavy 

equipment that must be prioritized for service to 

prevent unscheduled breakdown or premature failure 

to the engine components. 

4. Monitoring system application can be used by UT site 

technical engineers and maintenance teams to 

prioritize units for faster and enable more accurate 

service schedule (improve analysis lead time from 8–

10 days to 2–3 days with PCAR Portal). 
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